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ABSTRACT. Gordon-Loeb’s model of investment into mitigation of Information Technol-
ogy risks is simple and versatile, and thus attracted significant attention of both IT prac-
titioners and economists. One of the claims of the original research was that the optimal
investment level never exceeds 1/e-th fraction of the value at risk, the result they verified
for several of instances of their model. At the same time, subsequent works showed that
the result is false in the full generality of GL model.

In this note we first put the GL model into a more general context, deriving their pos-
tulates from several verifiable axioms. Further, we prove that in this framework, the 1/e
rule indeed holds in full generality, thus justifying the intuition of [2].

1. INTRODUCTION

Advances in information technology and its penetration of the business over the past
few decades was one of the leading forces driving the productivity growth in the US and
worldwide. This circumstance led to a surge of interest to economic aspects of information
and communication technology.

In particular, the economic aspects of cybersecurity, addressing the specific risks and
vulnerabilities of information technologies became increasingly scrutinized, especially
given the relatively open, standards driven character of most communication and data pro-
cessing protocols. We refer the reader to the survey [1] for comprehensive and up-to-date
references.

We address here the one of the fundamental yet still poorly understood question of
investment levels into IT security. How much a firm facing risks due to its IT vulnerabilities
has to invest in mitigating these risks?

1.1. Main results. The goal of this work is twofold. On one hand, I will try to go one
step deeper into the understanding the risk mitigation process, postulating some axioms
addressing the process as such. The properties of the residual vulnerability function S
will then be derived from these axioms, not taken as primitive. Further I will analyze the
optimal security investment for general problems satisfying the proposed axioms.1 It will
turn out that for such functions S, the 1/e rule of Gordon and Loeb holds.

1.1.1. Basic assumptions. Here is a sketch of the basic setup of this study (details are
found in the next section).

I posit that the mitigation process consists of a variety of independent actions (like
installs of software patches), each of which reducing the loss probability insignificantly and
similarly requiring small investment. A firm is free to choose a collection of the mitigating
actions best addressing its demands, to maximize the total utility of such investment.

1We do not restrict attention to any particular functional family; indeed, the results are valid generally, and the
set of functions S arising within the proposed framework is infinite-dimensional (indeed, an open convex subset
of the Banach space C([0,∞))).
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To model mitigating actions, whose costs and effects each are individually negligible
compared to the effect of the whole, we, following the standard paradigm, will introduce
a measurable space, Ω, so that the elements of this space are elementary actions, and its
subsets are the actions which can be deployed by a firm. We assume that the effects of the
actions are independent and the costs are additive. Together these assumption would lead
to integral representations of both costs and effects of the actions undertaking by a firm.

1.1.2. Log-convexity and 1/e rule. Under assumption of rationality (for a given budget,
the agent always selects the actions within the budget minimizing the residual vulnerabil-
ity), we prove that the residual vulnerability function S is not merely convex (thus justify-
ing this part of Gordon-Loeb model), but log-convex. The main tool here is the Lyapunov
convexity theorem.

And log-convexity of S turns out to be the key for the validity of 1/e rule: we prove that
the optimizer z∗ for (??) does not exceed R/e, as long as the function S is log-convex (the
functional families of studied in [2] are log-convex). Thus the 1/e rule is valid for a very
broad class of functions.

2. SETUP

We address the issue of rational investment into the security of information technology
of a firm within the framework close to that of [2]. As the model is rather general and does
not involve explicit modeling of IT risks or of ways of their mitigation, its scope does not
restrict to IT investment only. However, we will postulate several properties that IT risks
and actions mitigating them should possess; the properties of the model important to us
will rely on these properties.

We formulate these properties, true to the fashion of economic literature, as axioms
A0-A3.

One of the main differentiators of IT risks is the relative ease with which a given threat
can be generated, and with which it can be deflected. Compared with the loss a single threat
can, under favorable circumstances, inflict on an enterprise, the cost of either generating the
threat or of its deflecting is vanishing. This can be seen, for example, in the fast changes of
generations of computer viruses and in as efficient and rapid creation of anti-viral software.

A mitigating action against the plethora of IT vulnerabilities should therefore address
many of them at once. Let us identify a mitigating tool with the set of risks it is neutralizing.

Accepting this leads one to the following set of axioms:

2.1. Axioms.
A0 We assume that elementary protective actions are elements of a measurable space

of a separable measurable space (Ω,F), and that the protective actions form mea-
surable subsets of Ω. 2 Thus, an admissible protective action is a measurable
subset A ∈ F .

We will assume further that to each (measurable) subset A ⊂ Ω, we can asso-
ciate

– the cost of protective measure A, z(A), and
– the residual security risk, which we will denote as s(A)

2It will not restrict the generality a bit, to think of this measurable space as the unit interval equipped with the
σ-algebra of Borel sets.
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A1 We will assume that the costs of protective actions are additive: in other words,
for disjoint actions A1, A2,

z(A1 qA2) = z(A1) + z(A2).

Moreover, as, technically, we require z to be defined on all measurable subsets of
Ω, we will assume that s is compatible with the σ-algebra structure, and therefore,
z is a positive measure onΩ.

To formalize the idea that protective actions are infinitesimally small, we will
assume that the measure s is nonatomic, i.e. that any measurable subset A of
positive cost can be split into two disjoint subsets of lesser, yet positive costs
(summing up, of course, to s(A)).

A2 Similarly, we will require that the residual security risks are multiplicatively inde-
pendent, i.e. for disjoint A1, A2,

s(A1 qA2) = s(A1)s(A2).

The rational behind this assumption should be clear: the probability for a security
risk to escape two disjoint sets of independent protective actions is the product of
the probabilities to penetrate each of the defenses.

The logarithm of s is additive, and as before we will require also the σ-additivity,
so that

u := log(s)

is a (non-positive) measure onΩ.
Involving the infinitesimal smallness of the individual, elementary protective

actions, once again, we also postulate that u is nonatomic.
A3 Lastly, we will require that achieving perfect protection cannot be free, i.e. that

the range of the vector valued measure (s, u),

{(s(A), u(A)), A ∈ F }

does not contain (0,−∞).

Summarizing, our axioms [A0-A3] imply that the protective actions form a σ-algebra
F of subsets of some measurable space of elementary protective actionsΩ, equipped with
two measures, non-negative, s, and non-positive, u, such that for a protective action A ⊂
Ω, the cost is z(A) and the residual risk is s(A) = exp(u(A)). We will refer to these two
measures as cost measure and security breach measure, respectively.

3. FROM MEASURES TO FUNCTIONS

Recall that the primitive in Gordon-Loeb’s model was a function S(z), called security
breach probability, describing the residual probability of loss, given investment z. We will
recover S(z) assuming that given a budget z, the agent selects the most efficient protective
action A.

More formally, let us define S(z) as

S(z) = inf
A∈F :z(A)≤z

s(A) = exp( inf
A∈F :z(A)≤z

u(A)).

In other words, the least residual risk one can hope to achieve under any protective action
A whose cost does not exceed z.
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FIGURE 1. Residual risk probability (left) is the exponential of the lower
envelope of the range of the vector-valued measure (right display)

3.1. Main convexity result.

Proposition 3.1. a) The range of the (vector-valued) mapping

A 7→ (z(A), u(A))

is a convex closed subset R ⊂ R2 (in fact, a proper subset of the forth quadrant
{z ≥ 0, u ≤ 0}).

b) For any z, the value S(z) is attained on a protective measure A ∈ F;
c) The function

v : z 7→ log(S(z))

is convex.

PROOF: The part a) of the Proposition are immediate corollaries of Lyapunov’s convexity
theorem, stating that the range of a vector-valued non-atomic measure is closed and convex.
The properness of the range follows from our Axiom A3.

The part b) is then immediate by the continuity of exponential function.
The part c) is immediate from a) as well: the lower envelope of a convex set on the

plane is a graph of a convex function. �
One immediate reformulation of the Proposition 3.1 is

Proposition 3.2. The security breach probability S is a log-convex nonincreasing function
of z, and therefore convex itself.

PROOF: The first claim is a mere restatement of what we already know, while the second
claim follows as exp is a convex monotonous function. �

The log-convexity of S is in fact fairly intuitive. Indeed, one can think of S(z) as the
best collection of protective measures one can acquire given the capital z. Obviously,
one should invest into those tools whose (infinitesimal) return is highest. In our context,
this return is the rate at which the residual breach probability reduces with incremental
increase of the investment z. This rate is non-increasing if the investment is optimal, as the
best protection is acquired first. That is equivalent to the log-convexity.

We also remark here, that while we have derived the convexity of S from our axioms
A0-3, the differentiability of S (let alone twice differentiability) does not follow from these
axioms. As we will see, it is not needed for our primary goal, the 1/e rule.
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4. OPTIMAL SECURITY INVESTMENTS AND 1/e RULE

Now we are ready to prove our main result, that the optimal security investment never
exceeds the 1/e fraction of the total expected risk.

Theorem 4.1. Let S be a non-increasing nonnegative log-convex function, and z∗ is a
solution to the optimization problem

min
z≥0

LS(z) + z.

Then

(1) z∗ ≤ LS(0)/e.

PROOF: The definition of z∗ means that

(2) LS(z∗) + z∗ ≤ LS(z) + z,
for all z ≥ 0. In other words, inequality (2) implies that the graph of the function LS(z)
lies above the graph of the linear function

(3) v(z) = LS(z∗) + z∗ − z

Let e(z) = A exp(−az) be the exponential function such that the values of e and v and of
their derivatives coincide at z∗, i.e.

(4) A exp(−az∗) = LS(z∗) and −Aa exp(−az∗) = −1.

Taking the logarithms, we arrive at three functions

sl = logLS, vl = log v, el = log e,

such that
(1) sl(z∗) = el(z∗) = vl(z∗);
(2) sl ≥ vl on (0,∞);
(3) The linear function el has the same derivative as vl at z∗;
(4) the function sl is convex.

It follows, that
sl ≥ el on (0,∞).

Indeed, otherwise, for some z ′ ≥ 0,

(5) sl(z
′) < el(z

′),

and by convexity,

(6)
sl(tz

′+(1−t)z∗) < sl(z∗)+t(sl(z
′)−sl(z∗)) < el(z∗)+t(sl(z

′)−el(z∗)), 0 ≤ t ≤ 1.
On the other hand,

(7) sl(tz
′ + (1− t)z∗) ≥ vl(tz ′ + (1− t)z∗) = el(z∗) + t(el(z

′) − el(z∗)) +O(t
2)

(here we used the differentiability of vl and the fact that vl and el coincide with their
derivatives at z∗). Combining (5),(6) and (7) we obtain a contradiction for small enough
t > 0.

Hence,
LS(z) ≥ A exp(−az), 0 < z <∞.
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In particular, LS(0) ≥ A, and therefore, by (4),

(8) LS(0)az∗ exp(−az∗) ≥ z∗.
As t exp(−t) is bounded from above by 1/e, our result follows. �

4.1. Remark. The proof of Theorem 4.1 would be even shorter if we assumed twice dif-
ferentiability of S: in this case we could skip the introduction of the auxiliary function v
deploying just the infinitesimal optimality conditions.

4.2. Example. To somewhat juice up somewhat dry presentation, let us consider two
functional families from [2], to check that they consist of log-convex functions:

First family is given by

S(z) =
v

(az+ 1)b
, a, b > 0.

Hence
logS = log v− b log(az+ 1),

which is a patently convex function.
For their second family,

S = vaz+1,

logarithm is plainly linear, thus (non-strictly) convex as well.

5. CONCLUSION

One of the direction which would be very interesting to exploit deals with the properties
of the residual loss probability function S in the situation where the elementary protective
measures are not “sequential”. In our model, essentially, the vulnerability, to succeed, has
to pass through a sequence of “filters”, each having its shot at eliminating the threat. In
many situations, this model might be too limited: risks can have different nature, follow-
ing, so to say, different routes. Understanding the properties of the range of (s, z) in this
situation seems to be both interesting and challenging.
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