Cormac Herley
Microsoft Research, Redmond

The Plight of the Targeted Attacker in a World of Scale
Puzzle: Where Do All the Attacks Go?

- Observation: ~2 billion Internet users
- Most ignore most security investments
 - Weak passwords, expired AV, password re-use, obvious secret questions,
- Amazingly sophisticated attacks
 - LCD screen reflections, hash collisions, realtime MITM
- Life goes on. (Obla-di, Obla-da)
New Threats Every Day
Common Threat Model

- Alice is an internet user
- Charles has ever-increasing number of attacks
- If Alice neglects any defense Charles wins
New Threat Model: Scaleable Attacks

Carl: Scaleable Attacks
- Sub-linear Cost Growth
 \[C_s(2N) \ll 2C_s(N) \]
- E.g. spam, phishing, anything automated

Diagram:
- Carl
- Alice
- Klara
- Scalable Attacks
- Non-Scalable Attacks
New Threat Model: Non-Scaleable Attacks

Klara: Non-Scaleable Attacks
- Linear (or worse) cost growth
 \[C_n(2N) \approx 2C_n(N)\]
- E.g. spear phishing, anything that involves per-user effort, knowledge of victim, proximity etc
Threat Model

- Two Attackers, two cost models
 - **Carl achieves economies of scale**
 - **Klara has per-user cost**
 - No loss of generality

- Rewards:
 - \(\text{Reward}(N) = NYV \)
 - \(N = \# \) attacked users
 - \(Y = \) Yield
 - \(V = \) Average *Extracted* value
1. Scaleable Attacks Reach Many More Users (for same cost)

- **Scalable Attacks**: Profit improves with scale
 - \(\text{Profit}_s(2N_s) = \text{Reward}_s(2N_s) - C_s(2N_s) \)
 - \(> 2 \text{Reward}_s(N_s) - 2 C_s(N_s) \)
 - \(> 2 \text{Profit}_s(N_s) \)
 - Attack everyone, as often as possible

- **Non-scalable attacks**: profit constant w/ scale
 - \(\text{Profit}_n(2N_n) \approx 2 \text{Profit}_n(2N_n) \)
 - Be selective
2. Scaleable Attacks Produce Commodity Goods

- **Scripted => Anyone can do**
 - Commoditization
 - Tragedy of the Commons
- **Competition drives** $V_s \to 0$

Data:
- Spam: $2800 for 350e6 emails [Kanich et al 2009]
- Price of CCNs, creds falling [Symantec 2009]
- Captcha Solving: [Motoyama et al 2010]

<table>
<thead>
<tr>
<th></th>
<th>Captcha/ 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>$10.00</td>
</tr>
<tr>
<td>2008</td>
<td>$1.50</td>
</tr>
<tr>
<td>2009</td>
<td>$1.00</td>
</tr>
<tr>
<td>2010</td>
<td>$0.75</td>
</tr>
</tbody>
</table>
How do Carl/Klara compete?

- Carl reaches many more users \((N_s \gg N_n)\)
- Economies-of-scale businesses are tough on non-scaleable actors
- Klara should switch to scaleable strategy if she can’t match Carl’s return
Non-scalable vs Scalable

- **Reward(N) = N Y V**
 - N = Users Attacked
 - Y = Yield
 - V = Extracted Value/Successfully attacked user

- **At Equal cost to beat Scalable Return:**
 \[N_n Y_n V_n \geq N_s Y_s V_s \]

\[\Rightarrow \log \left(\frac{Y_n}{Y_s} \right) \geq \log \left(\frac{N_s}{N_n} \right) - \log \left(\frac{V_n}{V_s} \right) \]
Profit Frontier:
\[\log_{10} Y_n/Y_s \geq \log_{10} N_s/N_n - \log_{10} V_n/V_s \]

Non- Scalable needs: beat scaleable Yield-Value by as much as beaten on reach.

Klara beats Carl
Competing on Yield Alone makes no sense

- \(V_n = V_s \) then Klara competes on cost
- Klara now needs:
 \[N_n Y_n \geq N_s Y_s \]
- Since \(N_n \ll N_s \) this is hard:
 - \(Y_n \approx 4.5 Y_s \) [Jagatic et al. Spear Phishing '06]
 - Also, recall \(V_s \to 0 \) due to commoditization
 - Reward decreases, but costs do not
- \(V_n = V_s \) gives Klara difficult task
Klara needs: \(N_n Y_n V_n \geq N_s Y_s V_s \)

Since \(N_n \ll N_s \) must have:

\[
Y_n V_n \geq Y_s V_s
\]

So, higher yield, or higher value, or both

Competing on Yield Alone Makes no sense

\[
\Rightarrow V_n \geq V_s
\]

Needs at least higher-than-average Value
Klara needs longtail distribution of value

- At very least need $V(k) > V_s$
- Easiest when few users have high value, and most have low value

- **Worst:** uniform
- **Best:** power-law

- Must also be *observable*
 - Klara must be able to see who has high $V(k)$
In longtail distributions most Users have below average value

- Power-laws are everywhere
 - Wealth, fame, website popularity
- Mean >> Median
 - Most users have $V(k) < V_s$
- Example concentrations:
 - US Wealth: 1.8% above avg.
 - Fame: 2% above avg.
- 98% of users worthless to Klara
- Attacking them hurts rather than helps.
- True no matter how many Klara’s there are
The Plight of the Targeted Attacker

- To equal Carl: \(N_n Y_n V_n \geq N_s Y_s V_s \)

- Competing with \(V_n = V_s \) makes no sense

\[\Rightarrow \text{Klara seeks high-value targets} \]
\[\Rightarrow \text{Klara needs longtail, observable distribution} \]
\[\Rightarrow \text{In longtails most users have } V(k) < V_s \]
\[\Rightarrow \text{Most users not attacked by Klara} \]
Alice’s Bank Backup auth questions can be determined with 1hr effort from facebook
Acct yields $200.
Is this $200/hr for Klara?

No. Unless this always succeeds
Klara’s reward depends on:
 - Y = fraction of bank accts hackable from facebook
 - V = Average extracted value

Alice’s security avoidance of harm depends on
 - Worthlessness of average facebook account
What does Klaral Attack?

- PC’s for Zombie use?
 - Value as Zombie is close to uniform
 - Value of creds on box unobservable
- Email, social networking?
 - Sarah Palin’s email, U East Anglia climate researchers
- Bank Creds?
 - Carl bulk-produces consumer creds
 - Small biz creds
Concentrated/Observable

<table>
<thead>
<tr>
<th></th>
<th>Not Observable</th>
<th>Observable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Concentrated</td>
<td></td>
<td>Value Generic (PC for zombie, email for spam)</td>
</tr>
<tr>
<td>Concentrated</td>
<td>PC for credentials</td>
<td>Fame: (Sarah Palin’s email) Closeness: (jealous ex-SO)</td>
</tr>
<tr>
<td></td>
<td>Sloppiness (Hi/Lo value acct. password sharing)</td>
<td>Gullability* (responds to 419 scam)</td>
</tr>
</tbody>
</table>

Gullability not observable. Nigerian 419 email is a scaleable attack which renders gullability observable. Carl/Klara cooperation
Security Investments

- Non-scaleable attacks are common, scaleable rare
- How much you must invest depends on whether anyone is targeting you

![Graph showing the relationship between security investment and the number of users falling to scaleable attacks, with the condition V(k) > V_s]
Conclusions

- How much should invest depends on targeting
 - Visibly in most valuable few percent for some asset?

- Elaborate non-scaleable attacks fail to happen
 - Benefit (to attacker) < Cost (to attacker)

- Most users never see most attacks