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Abstract

In this paper we discuss a simple and general model for evaluating
optimal investment level in information security proposed by Gordon
and Loeb [5]. The authors leave an open question, whether there exists
some universal upper limit for the level of optimal security investments
compared to the total cost of the protected information set. They
also conjecture that if such a level exists, it could be % ~ 36,8%. In
this paper, we disprove this conjecture by constructing an example
where the required investment level of up to 50% can be necessary. By
relaxing the original requirements of Gordon and Loeb just a little bit,
we are also able to show that within their general framework examples
achieving levels arbitrarily close to 100% exist.

1 Introduction

Even though information security problems are as old as information ex-
change, the decisions about the respective defense measures are mostly still
taken based on heuristics and experience. There is a definite lack of general,
reliable and rigorous models one could use in order to make such decisions.

Several models are proposed that view spending on information security
as an investment and try to model the result using some existing frame-
work. For example, Bier and Abhichandani discuss in [2, 1] the pros and
cons of game theory vs reliability theory frameworks and use game-theoretic
models to analyse the security of systems consisting of parallel components.
Kunreuther and Heal note that if attackers and defenders are considered
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as players of a game, their decisions are actually interdependent. They de-
velop a respective general model for several classes of problem settings in
[9] and use it to deal with the case of identical agents in [8]. Kannan and
Telang build economical models to compare community-based vulnerability
disclosure and CERT-based vulnerability disclosure mechanisms in [7]. In
[4], Danezis and Anderson study and compare censorship resistance archi-
tectures in environments like peer-to-peer networks.

However, all of these models are quite application area specific and
mostly also rather complicated. In 2002, Gordon and Loeb proposed a sim-
ple and very general model for evaluating vulnerability decrease as a result of
increased investments [5]. They consider two concrete function families that
represent possible decrease scenarios and come to the conclusion that for
both of them, the optimal level of investments does not exceed % ~ 36,8%
of the total value of the informational assets. They leave an open ques-
tion whether this constant is universal among all the functions that satisfy
certain constraints, or may larger investments be necessary.

The first counterexamples breaking the % barrier were given by Hausken
[6]. However, Hausken’s results deviate considerably from the original model
of Gordon&Loeb by replacing the requirement of convex vulnerability de-
crease with concave logistic decrease and other decrease functions, dropping
the conditions concerning continuity of the first and second derivatives, etc.

In this paper, we will demonstrate that following strictly Gordon&Loeb
framework, there exist vulnerability decrease functions that require invest-
ments up to 50% of the asset value. We will also show that scenarios re-
quiring investments up to 100% can be constructed if we drop just the re-
quirement of continuity of the second derivative of the vulnerability decrease
function.

The paper is organised as follows. First, Section 2 presents an outline
of Gordon&Loeb model. Next in Section 3 we introduce a slightly modified
model that achieves the required investment level of 50%. Then, in Section
4 we show how to go back to the original Gordon&Loeb framework without
decreasing the investment level. We also point out an unnecessary condition
of Gordon&Loeb, which, when relaxed, leads to required investments up
to 100%. Finally, Section 5 draws some conclusions and sets directions for
future work.



2 The Model of Gordon and Loeb

In order to estimate the optimal level of information security investment for
protecting some information set, Gordon and Loeb consider several param-
eters of the set in [5], and we will accept similar, though a bit more formal
notation.

First, let L denote the potential loss associated with the threat! against
the information set, i.e. L = t\, where t is the probability of the threat
occurring and A\ is the (monetary) loss suffered. Further, let v denote vul-
nerability, i.e. the success probability of the attack once launched; v L is then
the total expected loss associated with the threat against the information set.

If a company invests z dollars into security, the remaining vulnerability
(called security breach probability in [5]) will be denoted by S(z,v). The ex-
pected benefit from the investment can then be computed as (v — S(z,v))L
and the expected net benefit as (v — S(z,v))L — z. Under suitable differ-
entiability assumptions (see the condition A3 below), we can see that the
optimal level of investment can be found by computing the local optimum
z* of the expected net benefit, i.e. by solving the first order equation

%[(v —S(z,v))L—2]=0
and obtaining the following condition for z* = z*(v):

0
——8(z*,v)L = 1. 1
—5(2",v) (1)
Of course, the remaining vulnerability function can not be arbitrary.
Clearly, since S(z,v) is a probability, we must have 0 < S(z,v) < 1. Its first
argument is an investment and the second one another probability, so 0 < z
and 0 < v < 1. Besides that, the following restrictions are defined in [5]:

A1l VzS5(z,0) = 0, i.e. if initially the attack success probability is 0, it
stays so after every possible investment.

A2 Vv S(0,v) = v, i.e. if we invest no money, there will be no change in
the attack success probability.

!Following the ideology of Gordon and Loeb, we consider here the simplified scenario of
a single threat and leave considering the (more realistic) case of several (interdependent)
threats for future studies. A natural framework for such a study would be using the
threat tree approach proposed by Schneier [10] in the fashion similar to the analysis done
by Buldas and Saarepera in [3].



A3 The function S(z,v) is continuously twice differentiable and for 0 < v
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P S(z,v) > 0.

Additionally,
Yo lim S(z,v) = 0.
zZ— 00

The condition A3 is postulating that with increasing investments it is possi-
ble to decrease the vulnerability level, but at a decreasing rate. Nevertheless,
investing larger and larger amounts it is possible to make the attack proba-
bility arbitrarily small.

In their paper, Gordon and Loeb give two examples of function families
that satisfy the conditions A1-A3, namely

= (ozz+1)5’(

a>0,0eR) and S =yt (a>0).

Applying the first order condition (1) we can find the optimal level of in-
vestments, z'*(v) and z//*(v), respectively. Next, it is a natural idea to com-
pare the optimal investment level to the total expected loss v L. It is proved
in [5] that z*(v) < vL for all functions S(z,v) satisfying the conditions A1-
A3, and even more interestingly, that 2/*(v) < oL and 2/*(v) < 1vL.2

It is left as an open problem in [5] whether the constant % is universal for
all possible functions S(z,v) meeting the conditions A1-A3. If it were so,
it would mean that we have the first formal evidence that in order to defend
some property (say, information), it is always optimal to spend considerably
less than the value of the property is.

On the other hand, it is in principle also possible that the above functions
are just two concrete examples achieving the same constant by coincidence.
Can it happen that there exist other functions S(z,v) such that the corre-
sponding optimal investment level z*(v) can be larger than %UL? The aim
of the next sections is to show that the latter is actually the case and that
there exist functions S(z, v) such that the corresponding optimal investment
level z*(v) can be arbitrarily close to % of the total expected loss vL.

In order to give a concrete example of a suitable family of functions, we
first extend the model of Gordon and Loeb a little bit in Section 3. Later in
Section 4 we argue that we can also construct a similar example within the

2There are actually more classes of functions not mentioned in [5] but giving the same
asymptotic bound %vL, for example S(z,v) = va® (1 > a > 0). The proof of the
respective bound is similar to the one given in [5].



original model. Finally we will see that relaxing the condition A3 a little
bit more we can achieve that the optimal investment level z*(v) becomes
arbitrarily close to the total expected loss vL.

3 A modified Model

Note that the inequality %S (z,v) < 0 from the condition A3 implies, that
unless originally we had v = 0, it is impossible to decrease the attack prob-
ability to exactly 0, no matter how large amounts of money we invest.?
Whereas this may be a good approximation of some real world threat situa-
tions, there definitely exist threats that can completely be removed investing
enough into improving security measures.* Thus we propose extending the
condition A3 to the following form.

A3’ The function S(z,v) is continuously twice differentiable and

2

0
—S(z,v) <0 and 9.2

> 0.
P S(z,v) >0

Additionally,
VYo lim S(z,v) = 0.
zZ—00
Essentially, besides the functions allowed by the condition A3, we also allow
the functions (viewed as functions of the variable z) that strictly decrease
to 0 and then stay 0.

The class of functions that we will next construct will be exactly of
this nature. We will introduce a parameter b that represents the maximal
amount of investment that is required to completely secure our information
set, i.e. S(z,v) = 01if 2 > b. For 0 < z < b we have to find a suitable
function so that the conditions A1, A2 and A3’ would be satisfied. We
claim that the following family of functions

_ 2k <
S”I(z,v):{”(l b)o’ gg;gd’ (b>0,k>2) (2)

satisfies all the required properties.

3To see this formally, assume to the contrary that for some values vo > 0 and zy we
would have S(zo,v0) = 0. Since 2 S(z,v) < 0, we would have S(z,v0) < 0 for all z > z,
which is clearly impossible as S(z,v9) is a probability.

4For example, if the threat is a possible attack from a specific person, it is possible to
get rid of this person by paying to a hit man and having this person killed.



Proposition 1 The functions ST (z,v) satisfy the conditions A1, A2 and
A3’

Proof. The conditions of A1 and A2 are straightforward to verify. For the
condition A3’ we compute
o kv (1 _ g)k—l

gslll(z,v):{ — b

, f0<z<b
0, ifz>0b

and

8_25111(271)) _ { M - 2)h=2, if0<z<b
022 0, ifz>0

Now, clearly %S(z,v) < 0 and %S(z,z}) > 0. Besides this we need conti-
nuity of the function itself, its first and second derivatives. The only position
where these functions can in principle be non-continuous is z = b. But we
see that they are continuous since

0 0?

I 171 _ lim -2 gl _ lim 2 gl _
ngn—s (z,v) =0, Jim. azS (z,v) =0 and Jim 87325 (z,v) =0
(the latter equality holding due to k > 2 and the second one due to implied

k > 1). The only remaining condition
Vo lim S (z,0) =0
zZ— 0
holds trivially and this concludes the proof. B
Now we are ready to state and prove the main result.

Proposition 2 Suppose that the remaining security breach probability can
be represented in the form of function ST (z,v) given by (2). Then 2*(v) <
%’L)L. Further, the amount of required investment z*(v) can be arbitrarily
close to %fuL.

Proof. We first solve the equation (1) under the restriction z < b (since
investments exceeding the level b give perfect security anyway). We rewrite
the equation (1) as follows.

0

—aSHI(z*,U)L =1

kv 2\ k1
ey L = 1
7 (1-3)
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Next we will find the maximum for the function ZZ(LU) and prove that it

approaches % from below. Denoting x = % we must analyse the function

W _ b <1_ <%>> (-7 ®

We compute the first derivative

- ™)) @

and use it to find the extremum point of the function (3):

1_L<@)k—11 _ o,

k—1\k
= k{——) .

One may verify that the value of the second derivative at the point zq is
kk72

~ =D This quantity is strictly negative for k& > 1, so we have z¢ as a

maximum point. Substituting its value to the expression (3) we get

1
k1)1 E—1\F 1) T b 1)\F1
k| — 1— — =\— .
k k k
This expression is known to decrease as a function of k approaching the
value % from above.

Since the family S7/!(z,v) of the remaining vulnerability functions was
defined for k£ > 2, we have

k‘—l k—1< 2 1 2—1_1
k 2 2

and we can approach this value as k — 2. This concludes the proof. B




4 Discussion

4.1 Satisfying the Condition A3

The family S/ (z,v) of the remaining vulnerability functions does not sat-
isfy the condition A3 of Gordon and Loeb. In this section we first modify
the family S//(z,v) a little bit so that the original condition A3 is also met,
but the Proposition 2 still holds. This way we will have constructed a full
counterexample to the conjecture about the universality of the constant %
made in [5]. We will not give an explicit analytical construction, but rather
explain a possible construction method.

Consider the graph of one concrete function from the family S/{(z,v)
with b = 1 and k = 3 (see Figure 1). We see from the Figure and from
(2) that if z < b and v > 0 then SY!(z,v) > 0. From (2) it is also
straightforward to verify that under the same restrictions on z and v we
get %S”I(z,v) < 0 and aa—;SIH(z?v) > 0.

Figure 1: The graph of the function S'/(z,v) with b = 1 and k = 3;
2 €0,1.5], v € [0,1]



To construct a new function we will first fix a number b’ € (0,b) and de-
fine SV (z,v) such that SV (z,v) = S (z,v) for z <. Next consider the
values ST (¥, v), %SHI(Z)’,U) and g—;S”I(b’,v) (remember that they are
strictly positive, negative and positive, respectively). It remains to choose
the continuation of S’V (z,v) for z > ¥’ so that it would retain continuity and
strict inequalities for the function and its first and second derivatives, and
additionally would converge to 0 as z — oo. It is clear that such functions
exist, and we will not give an explicit analytical example here.

It remains to understand why the result of Proposition 2 still holds for the
functions of the form STV (z,v). Going back to the proof of the Proposition
2 we see that the maximum is achieved when z = (%)k_l vL and % =

k— Do . . .
k (%) 1, which imply 2z = %. Since k > 1, we can retain the optimum of

S (2, v) for the function S’V (z,v) by choosing the cutting point b’ to be
within the range (%, b).

4.2 Extending the Model

Going back to the proofs of Propositions 1 and 2, we see that the restriction
k > 2 was actually needed only for continuity of the second derivative of the
function family S//(z,v). On the other hand this restriction limited the
value of %(LU) to be upper bounded by %

Is continuity of the second derivative of the remaining vulnerability func-
tion really essential in the model of Gordon and Loeb? When stating the
condition A3 in [5], the authors say: “This is, as the investment in secu-
rity increases, the information is made more secure, but at a decreasing
rate.” This principle translates to the inequalities in the condition A3. The
continuity of the first derivative is required for the existence of the second
derivative, but there is actually no reason for the latter to be continuous.

Thus we may state the extended condition A3” as follows:

A3” The function S(z,v) is twice differentiable and for 0 < v
2

0
@S(Z’U) <0 and S(z,v) > 0.

922
Additionally,
Yo lim S(z,v) = 0.

zZ—00

Similar to the Section 3 we can relax the strict inequalities and then prove
that the family of functions

_ 2k ifo <
SV(z,U):{”(l b>0’ gg;gd (b>0,k>1)



satisfies the resulting requirements. Exactly as in Proposition 2 we can now
show that the constant ¢ in the inequality z*(v) < cvL is upper bounded by
the value (%)k_l, but since now we can let £ — 1, we get (%)k_l —1
as well, which means that for the remaining vulnerability functions from the
family SV (z,v) it may be necessary to spend almost the information set’s
value for its protection. Using the technique presented in Subsection 4.1,

functions with the same property and satisfying A3” can be constructed.

5 Conclusions and Further Work

In this paper we reviewed a recent model proposed by Gordon and Loeb
allowing one to evaluate the potential vulnerability decrease as a result of in-
vestments into information security. Even though it is clear that the amount
of investments can not exceed 100% of the value of the assets, the first study
of the model suggested that there might actually exist some lower optimal
level. In this paper we showed that the candidate level of % ~ 36,8% con-
jectured by Gordon and Loeb is not correct in their model, and that by
dropping one minor and a bit too strict requirement we can achieve con-
crete examples of vulnerability decrease functions approximating the level
of 100%.

This does not mean that Gordon and Loeb model is unusable. In fact, it
is very a general and simple one and therefore deserves deeper studies. This
generality is also its weak point — the form of the underlying vulnerability
decrease function is left open, thus in order to obtain any real results some
concrete function must be plugged in. In [5], Gordon and Loeb considered
two specific function families, but actually there is no reason to assume that
any function in any of these families corresponds to any real vulnerability
decrease scenario. Thus, the main direction in the further work is to look for
functions reflecting changes in vulnerability for some real situations. Clearly,
such functions are strongly application area specific.

There are also possibilities to extend the model in other directions. For
example, currently it only considers the drop in vulnerability as a result of
investment. However, there are other effects of security investments, e.g.
increase in the price of attack for the attacker. It is not immediately clear,
how the investment (i.e. the defender’s money) can be converted to the cost
of attack (i.e. attacker’s money), and this study will be the topic for future
research as well.
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