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ABSTRACT
Recent widely publicized data breaches have exposed the
personal information of hundreds of millions of people. Some
reports point to alarming increases in both the size and fre-
quency of data breaches, spurring institutions around the
world to address what appears to be a worsening situation.
But, is the problem actually growing worse? In this paper,
we study a popular public dataset and develop Bayesian
Generalized Linear Models to investigate trends in data
breaches. Analysis of the model shows that neither size
nor frequency of data breaches has increased over the past
decade. We find that the increases that have attracted at-
tention can be explained by the heavy-tailed statistical dis-
tributions underlying the dataset. Specifically, we find that
data breach size is log-normally distributed and that the
daily frequency of breaches is described by a negative bi-
nomial distribution. These distributions may provide clues
to the generative mechanisms that are responsible for the
breaches. Additionally, our model predicts the likelihood of
breaches of a particular size in the future. For example, we
find that in the next year there is only a 31% chance of a
breach of 10 million records or more in the US. Regardless
of any trend, data breaches are costly, and we combine the
model with two different cost models to project that in the
next three years breaches could cost up to $55 billion.

1. INTRODUCTION
In February 2015, the second largest health insurer in

the United States, Anthem Inc., was attacked, and 80 mil-
lion records containing personal information were stolen [30].
Just a few months earlier, in September 2014, Home Depot’s
corporate network was penetrated and over 56 million credit
card numbers were acquired [6, 27]. Both incidents made
national headlines, the latest in a string of large-scale data
breaches ([13, 26, 16]) that have spurred both the United
States Congress [12] and the White House [25] to propose
new disclosure laws to address what appears to be a wors-
ening situation.

Several studies provide evidence that the problem of elec-
tronic data theft is growing. A 2014 Symantec report noted
that there was an increase in the number of large data
breaches, and a dramatic five-fold increase in the number of
identities exposed over a single year [11]. In another study,
Redspin reported that the number of breaches in the health
care industry increased 29% from 2011 to 2012, and the to-
tal number of records compromised increased 138% for 2012
to 2013 [23].

But, is the problem actually growing worse? Or if it is,

Figure 1: Data breach sizes (records exposed) over a ten-year
period. Data taken from [9]

how much worse is it, and what are the trends? The data
used to produce these kinds of reports have very high vari-
ance, so simply reporting average values, as in these ear-
lier reports, can be misleading. Figure 1 plots breach sizes
over the past ten years using data obtained from a popu-
lar dataset published by the Privacy Rights Clearinghouse
(PRC) [9]. In the figure, data breach sizes span eight orders
of magnitude, which means that the average value can be
significantly affected by just a few data points. For exam-
ple, if we consider the identical data, but plot it on a yearly
basis, it appears that breaches have increased in average size
since 2012 (blue line on the figure). However, this trend is
not at all obvious if we consider the data on a monthly or
even quarterly basis, also shown in Figure 1 (green and red
lines). Thus, there is a need for statistically sound data
analyses to determine what, if any, trends exist, and where
possible to make predictions about the future.

To address these issues, we adopt a statistical modeling
approach and apply it to the PRC data, showing that in
this dataset neither the size nor the frequency of breaches
has increased over time. We use a Bayesian approach, which
allows us to construct accurate models without overfitting
(see subsection 3.1). Our analysis shows different trends for
different subsets of the data. We consider two distinct types
of breaches: malicious, where attackers actively target per-
sonal information, and negligent, which occur when private
information is exposed accidentally (e.g. misplacing a lap-
top). In the dataset, the size of malicious breaches has been
slowly decreasing over the ten-year period, but the frequency



has remained constant. By contrast, negligent breaches have
remained constant in size and frequency over the ten-year
period (see subsection 3.2 and subsection 3.3).

Beyond assessing trends, this approach enables us to de-
termine the likelihood of certain future events, at least in
the United States (see section 4). For example, the model
predicts that in the next three years there is 7.8% chance of
another Anthem sized (80 million) breach, and only a 0.4%
chance of a Anthem and Home depot sized breach occurring
within a year of each other. Further, there is a 1.2% chance
of another Anthem-sized breach occurring between February
19, 2015 and the date of the Workshop on Information Se-
curity (in June 2015), and a 70% probability that there will
be a breach of at least one million records in the same time
frame. The probabilities are relatively high for breaches of
one million records because the distributions that best de-
scribe the size of breaches in the dataset are heavy-tailed,
meaning that rare events are much more likely to occur than
would be expected for normal or exponential distributions.

Another contribution of our paper is identifying the par-
ticular forms of the underlying distributions, which may of-
fer insight into the generative processes that lead to data
breaches. For breach sizes, we find that the distribution
is log-normal (see subsection 2.2); such distributions are
known to emerge from multiplicative growth. In fact, the
size distribution of companies is best described by a log-
normal [40], so we speculate that as a company grows, the
number of data records it holds grows proportionally, and
breach sizes follow along. By contrast, the breach frequency
best fits a negative binomial, which could be generated by
a mixture of different types of breaches, with each type oc-
curring at a different but constant rate (see subsection 2.3).

Some of our results seem counter-intuitive given the cur-
rent level of concern about privacy and the damage that a
data breach can cause. However, some simple anecdotal ob-
servations about our data lend credence to the results. The
largest data breach in our data occurred back in 2009 when
cyber-criminals stole 130 million credit card numbers from
Heartland payment systems [33]. Additionally, as of March
4, 2015 there had been no breaches of personal information
in the past 15 days, less than might be expected given cur-
rent headlines.

We used the publicly available dataset that we believe
is the most complete, but our models could easily be ap-
plied to additional datasets, for example, datasets that are
not yet in the public domain or those that may arise if
new disclosure laws are passed. Moreover, by establishing
a baselinel, the models we describe could be extended in
the future by incorporating additional data on the nature of
the breaches, which could help identify promising areas for
technical improvement. Such analysis could also help pol-
icy makers make better decisions about which problems are
most pressing and how they should be addressed. For ex-
ample, cybersecurity today is often framed in terms of risk
analysis and management [34, 4]. Accurately assessing risk,
however, requires quantitative measures of likelihood and
cost. In this paper, we use available data and statistically
sound models to provide precise estimates of the likelihood
of data breaches. Using these estimates, we then incorpo-
rate two different cost models (see subsection 4.4 to assess
likely future risks. Depending on the cost model, if trends
continue we can expect the cumulative cost of data breaches
to be between $3 and $55 billion over the next three years.

2. DATA
In this section, we describe the dataset obtained from the

Privacy Rights Clearinghouse (PRC) and examine the dis-
tribution of breach sizes and frequencies. We show that the
size of data breaches is log-normally distributed, whereas
the daily frequency of breaches follows a negative binomial.
Finally, we show how those distributions are affected when
the data are divided into malicious and negligent breaches.

2.1 Privacy Rights Clearinghouse
The PRC is a California nonprofit corporation focused on

issues of privacy [8]. The PRC has compiled a “Chronology
of Data Breaches” dataset1 that, as of February 23, 2015,
contains information on 4,486 publicized data breaches that
have occurred in the United States since 2005. For each
breach, the dataset contains a number of variables includ-
ing: the date the breach was made public, the name of the
entity responsible for the data, the type of entity breached,
a classification of the type of breach, the total number of
records breached, the location (city and state) where the
entity operates, information on the source of the data, and
a short description of the breach.

Of the 4,486 breaches in the dataset, only those involv-
ing exposure of sensitive information have associated record
counts. We restricted our analysis to this subset, which
consists of 2,234 breaches. There are two noteworthy limi-
tations to these data. First, the number of records listed in
the dataset for each breach is only an estimate of the num-
ber of individuals affected, and second, the dataset contains
only those breaches that have been publicly acknowledged.
However, the PRC dataset is the largest and most exten-
sive public dataset of its type. It is possible that many data
breaches are going unreported. Different surveys have indi-
cated that anywhere between 60% [42] to 89% [7] of security
incidents go unreported. However, these reports are based
on informal surveys of security professionals, their accuracy
can’t be confirmed (section 6), and there is no obvious rea-
son why their size/frequency distributions should differ from
PRC.

2.2 Breach Size
We denote the distribution of breach sizes over the num-

ber of records contained in individual breaches as S. For
each individual breach i, we denote the number of associ-
ated records as si. To determine the time-independent dis-
tribution that best fits the data, we examined over 20 differ-
ent distributions, for example, log-normal, log-skewnormal,
power-law, log-logistic, and log-gamma.2 In each case, we es-
timated the best fit parameters for the distribution using the
maximum likelihood, and then performed a Kolomogorov-
Smirnov (KS) test to determine if the parameterized dis-
tribution and the data were statistically significantly differ-
ent [29]. Figure 2 shows the fit to log-normal; the KS test
gives p = 0.19, which means that we cannot reject the null
hypothesis that the fit is different than the data.3 For all

1Available for public download from http://www.privacyrights.
org/data-breach.
2Specifically, we tested all of the distributions in the
scipy stats package that have a domain defined for val-
ues > 0. http://docs.scipy.org/doc/scipy/reference/stats.
html#continuous-distributions.
3In this case, higher values of p are better, because they indicate
that we are not rejecting the null hypothesis, i.e. that the data
are drawn from a log-normal.

http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://docs.scipy.org/doc/scipy/reference/stats.html#continuous-distributions
http://docs.scipy.org/doc/scipy/reference/stats.html#continuous-distributions


Figure 2: The distribution of breach sizes and the fit to a log-
normal distribution.

other distributions, p < 0.05, which tells us that the data
were unlikely to have been generated from that distribution.
Although the best fit is to the log-normal, we can see in Fig-
ure 2 that the data points in the tail (high values of records)
deviate from the best-fit line. We return to this issue in
section 6.

Log-normal distributions often arise from multiplicative
growth processes, where an entity’s growth is expressed as
a percentage of its current size, independent of its actual
size [31]. This process has been used to model the size
of companies as measured by annual sales, current employ-
ment, or total assets [40], and we speculate that a related
process is operating here, because the number of sensitive
(customer) records held by a company could reasonably be
assumed to be proportional to its size.

2.3 Breach Frequency
We are interested in studying how often breaches occur

and whether or not there are interesting trends in breach
frequency. The dataset reports the exact date at which each
breach became publicly known. For the majority of dates in
the dataset, however, there were no publicly reported data
breaches, and on days when breaches did occur, there were
seldom more than two (Figure 3). Similar to the breach
size data, there are no obvious visible trends in the daily
frequency (data not shown).

We used a similar approach to the one we employed in sub-
section 2.2, except that we studied discrete distributions,
because the range of daily frequencies is so small. We ex-
amined a number of discrete distributions, such as Poisson,
binomial, zero-inflated Poisson and negative binomial, and
found that the best fit is provided by a negative binomial.
Figure 3 shows that the parameterized negative binomial
and the data do not differ significantly, according to the KS
test for discrete distributions [2], with p = 0.99. If we as-
sume that breaches occur independently and at a constant
rate, then we would expect the daily frequency to be a Pois-
son distribution [19]. However, the data are more dispersed
than can be explained by a Poisson, which has a very poor
fit, with p = 8× 10−10.

There are a number of random processes that generate a
negative binomial distribution [48]. The most likely candi-
date in this case is a continuous mixture of Poisson distribu-

Figure 3: The distribution of the daily number of breaches and
the fit to a negative binomial.

tions, which occurs when events are generated by a Poisson
process whose rate is itself a random variable. In our case,
breaches at different organizations, perpetrated by different
groups could all have different rates, leading to the negative
binomial distribution we observe here.

2.4 Negligent and Malicious Breaches
Each breach in the PRC dataset is categorized into one of

seven different categories (plus the category Unknown). The
seven categories naturally divide into two groups. The first
are breaches arising from negligence, where records were not
actively sought by an attacker but were exposed acciden-
tally, for example, through the loss of laptops, or accidental
public exposure of sensitive information. The second group
includes breaches arising from malicious activities that ac-
tively targeted private information, for example, attackers
hacking into systems, an insider using information for ma-
licious purposes, or payment card fraud. Table 1 contains
information on the number of each type of breach in the
dataset, and our groupings. It is apparent that negligent
breaches occur nearly twice as often as malicious breaches.

We re-applied the data fitting analysis described earlier
(subsection 2.2 and subsection 2.3) separately to each of
the two groups. We find that even when the data are di-
vided into negligent and malicious categories, each category
matches a negative binomial distribution for daily frequency,
although with different means. As before, the sizes of negli-
gent breaches are well fit by a log-normal distribution. How-
ever, malicious breach sizes have a weaker fit to the log nor-
mal. Even though the lumped data (all categories aggre-
gated) are log-normally distributed, it is possible that the
weaker fit for malicious breaches arises because this distri-
bution is changing over time. In section 3 we show how such
a change in trend could account for this poorer fit.

3. MODELING DATA BREACH TRENDS
Our earlier analysis does not allow for the possibility that

the distributions are changing over time. In this section, we
describe how we use Bayesian Generalized Linear Models
(BLGMs) [17] to construct models of trends in the PRC the
dataset. We then use Bayesian Information Criteria (BIC)
to determine the highest likelihood model, while avoiding
overfitting. We use the distributions derived in section 2,



Breach Type Description Count

Negligent Breaches 1408
Portable Device Lost, discarded or stolen, portable device or media 625
Unintended Disclosure Information posted in a publicly available place, mishandled, or sent to the wrong party 455
Physical Lost, discarded, or stolen non-electronic records 195
Stationary Device Lost, discarded or stolen stationary device or media 135

Malicious Breaches 767
Hacking Electronic entry by an outside party 458
Insider Someone with legitimate access intentionally breaches information 279
Payment Card Fraud Fraud involving debit and credit cards that is not accomplished via hacking 30

Unknown Other or Unknown 57

Table 1: Types of data breaches as categorized by the PRC, grouped into negligent and malicious breaches.

as the basis for our time-dependent models.

3.1 Bayesian Approach
We illustrate our approach by focusing on the sizes of

negligent data breaches, Sn. The basic strategy assumes
an underlying type of distribution for the data (e.g., sizes of
negligent breaches), which we found to be log normal in sub-
section 2.2. Hence Sn ∼ Lognormal(µ, τ), where µ is the
location parameter and τ is the shape parameter (standard
deviation).

To incorporate temporal variations, we model the loca-
tion parameter, µ, as a polynomial function of time, t, i.e.
µ = β0 + β1t+ · · ·+ βdt

d. Time is expressed as a decimal
value in years since January 1, 2005, with a resolution of
one day, e.g. t = 1.2 would be March 13, 2005. We describe
how to determine the degree of the polynomial, d, later. The
parameters, βi, for the polynomial, together with the shape
parameter, τ , comprise the prior distributions for the model.

The choice of prior distributions is an important and ac-
tive area of research in Bayesian statistics. As suggested
in the literature [17], we used normally distributed pri-

ors for the polynomial parameters, β0 ∼ N (log(Sn), 1) and
βi ∼ N (0, 1

V ar[ti]
), and a gamma-distributed prior for the

shape parameter, τ ∼ Gamma(1, 1). These priors are“unin-
formative,” i.e. they assume the least amount of information
about the data. Although there are other possible priors, our
results did not vary significantly when tested with other rea-
sonable choices. Once the model is defined, we can numer-
ically determine the parameters using maximum-likelihood
estimation.

To assess the accuracy of the estimates, we determine con-
fidence intervals for the values of the parameters using a
variant of Markov Chain Monte Carlo (MCMC) sampling
to ensure robust, fast samples [20]. MCMC is an efficient
general method for sampling possible values for the param-
eters of the model.

The remaining unknown in the model is d, the degree of
the polynomial. We determine a model for each d ∈ [0, 10],
and choose the model (and hence the polynomial) with the
minimum Bayesian Information Criterion (BIC) [39]. The
BIC balances the likelihood of the model, which is increased
by adding parameters, with the number of parameters and
size of data, and hence prevents overfitting. This enables us
to chose a model that best fits changes in the data, rather
than modeling statistical noise. This is an important feature
when the distributions are heavy-tailed.

To summarize, our modeling approach involves the follow-
ing steps:

1. Define a BGLM similar to Equation 1, as shown in sub-
section 3.2.

2. Find the maximum likelihood estimates for the param-
eters of the model (e.g. βi, τ) for polynomial trends d
up to degree 10.

3. Select the model that has the minimum BIC for the
maximum likelihood estimates of the parameters.

4. Sample from the distribution of βi using MCMC to
determine the confidence intervals for the parameters.

5. Randomly sample the model to generate a distribution,
and compare that to the actual distribution, using the
KS test.

3.2 Modeling Breach Size
As derived in subsection 3.1, the model for breach sizes is

Sn ∼ Lognormal(µ, τ)

µ = β0 + β1t+ β2t
2 + · · ·+ βdt

d

β0 ∼ N (log(Sn), 1)

βi ∼ N (0,
1

V ar[ti]
)

τ ∼ Gamma(1, 1)

(1)

The best fit model for malicious breaches, as determined
by the minimum BIC, gives d = 1, which indicates a lin-
ear trend in the data. Surprisingly, the trend is negative.
By contrast, for negligent breaches, the best fit is at d = 0,
which indicates that the distribution of sizes is constant.
Figure 4 shows the median values for models, plotted against
the PRC data4. Maximum likelihood estimates for the pa-
rameters are given in Table 2.

To summarize, we find that the distribution of negligent
breach sizes has remained constant with a median size of
2731, while malicious breaches have declined in size, with
the median declining at a rate of 15.6% a year over the ten-
year period represented by the dataset. Random samples
generated using Equation 1 and the estimates found in Ta-
ble 2, indicate that the predicted distribution of sizes by
the model does not significantly differ from the data, i.e.
our model generates data that are indistinguishable from
the actual data. The KS test gives p = 0.33 for the fit to
the negligent breach sizes, and p = 0.52 for the fit to the
malicious breach sizes.

4We show median rather than the mean because it better repre-
sents the typical values in heavy tailed distributions.



Figure 4: The size of data breaches from the PRC dataset,
versus the maximum likelihood estimate of the median size.

Variable Estimate 95% Confidence Interval
Negligent

β0 7.894 [7.753, 8.030]
τ 0.138 [0.128, 0.148]

Malicious
β0 8.56 [8.077, 9.032]
β1 -0.130 [-0.208, -0.046]
τ 0.0991 [0.089, 0.109]

Table 2: Maximum likelihood estimates and 95% confidence
intervals for models of breach size.

3.3 Modeling Breach Frequency
We use the same methodology to model the frequency of

data breaches, with a negative binomial as the basic distribu-
tion, as determined in subsection 2.3.5 The daily frequency,
Bn of negligent breaches is given by

Bn ∼ NegativeBinomial(µ, α)

log(µ) = β0 + β1t+ β2t
2 + · · ·+ βkt

k

β0 ∼ N (log(Dn), 1)

βi ∼ N (0, V ar[ti])

α ∼ Gamma(1, 1)

(2)

The same model is used for malicious breaches, replacing
Bn with Bm, the daily number of malicious breaches.

For the daily frequencies of both negligent and malicious
breaches, the models with the lowest BIC are polynomials of
degree d = 0, indicating that the daily frequency of breaches
has remained constant over the past ten years. The maxi-
mum likelihood estimates and 95% confidence intervals are
shown in Table 3. Random samples generated using the
Equation 2 are not statistically significantly different from
the data for both negligent and malicious breaches; which
have p = 1.0 and p = 0.96, respectively, for the KS test.

3.4 Modeling Large Breaches
It is possible that the models developed above are dom-

inated by smaller breaches, which have experienced little
change over the last ten years, while larger breaches are in-

5We also test a Poisson model, but found it had a higher BIC
than a negative binomial model.

Variable Estimate 95% Confidence Interval
Negligent

eβ0 0.383 [0.360, 0.407]
α 1.028 [0.841, 1.292]

Malicious

eβ0 0.208 [0.193, 0.223]
α 1.738 [1.113, 3.225]

Table 3: Maximum likelihood estimates and 95% confidence
intervals for models of daily breach counts. We report eβ0 as this
is the mean number of breaches of each type per day.

creasing in size or frequency. We define large breaches as
those involving 500,000 or more records. This threshold was
chosen because it includes a large enough sample size for
us to fit reasonable models (93 malicious and 121 negligent
breaches), but the threshold is high enough that the breach
would likely be reported widely in the press.

Using this definition, we find that large breach sizes still
fit a log-normal distribution, and that neither malicious nor
negligent large breaches show a significant trend over the
past ten years. Given that there is a slight downward trend
for malicious breaches of all sizes, this result implies that
small breaches must actually be declining even more on av-
erage.

The frequency of large breaches, both malicious and neg-
ligent, fits a Poisson distribution, rather than the negative
binomial observed for breaches of all sizes. This could indi-
cate that different processes are responsible for generating
large versus small breaches. Alternatively, it could simply
be that the very low probability of a large breach results in
a distribution that is difficult to distinguish from the nega-
tive binomial. In this case, we would expect the BIC of the
Poisson model to be lower because it has one less parame-
ter than the negative binomial. Regardless of whether the
best model mathematically is a negative binomial or Pois-
son, the trends for large breaches are the same as the overall
trends, with the frequency of malicious and negligent large
breaches remaining constant over the ten years covered by
the dataset.

4. PREDICTION
The power of a good statistical model is that it can be used

to make predictions about the likelihood of future events.
In this section we discuss what types of predictions models
like ours can legitimately make, and point out some of the
ways in which naive interpretations of the data can lead
to erroneous conclusions. We then demonstrate how the
model can be used to quantify the likelihood of some of the
large breaches that were experienced in 2014, and we make
some predictions about the likelihood of large breaches in
the future. Finally, we project the possible cost of data
breaches over the next three years.

4.1 Variance and Prediction
Because the distributions of both the breach sizes and

frequencies in the PRC dataset are heavy-tailed, it is dif-
ficult for any model to make precise predictions about the
exact number of breaches or their average size. This is dif-
ferent from a dataset that is, for example, normally dis-
tributed, where, with sufficiently large sample size, one can
say with high probability that samples in the future will clus-
ter around the mean, and estimate the chances of samples



falling outside one standard deviation from the mean. How-
ever, in the PRC dataset, common statistics like the mean
or the total number of records exposed are much less pre-
dictable. The data often vary wildly from year to year, even
if the process generating the breaches has not changed at
all. This phenomenon is common in many complex systems,
including many security-relevant datasets, e.g., [15].

We illustrate the effect of the high variability in Figure 5a
and Figure 5b. These figures show the result of measuring
the total number of malicious breaches and average breach
size annually for the historical data (black line) and a single
simulation using the models presented in section 3 (red line).
Although our model indicates a simple trend in the mean,
the distribution can generate large year-to-year variations.
These changes are often reported as though they are signifi-
cant, but our results suggest that they are likely artifacts of
the heavy-tailed nature of the data.

For example, a number of industry reports, some using
the PRC dataset, have pointed to large changes in the size
or number of data breaches from year to year [45, 11]. One
of the most alarmist is the Symantec Threat Report which
noted a 493% increase in the total number of records ex-
posed from 2012 to 2013, and a 62% increase in the number
of breaches in the same time frame.6 The 493% number
includes the large Court Ventures data breach, which was
initially reported as revealing 200 million records, but later
reports reduced that that number to 3.1 million records [16].
Even with this correction, the report implies a 282% increase
in the total number of breached records. These increases
sound startling, and a naive interpretation might suggest
that both the number and size of data breaches are skyrock-
eting.

We can test for the likelihood of such extreme changes
using our model. To do so, we used the model to generate
10,000 samples of possible annual totals, both for the num-
ber of breaches and the number of records, from 2005-2014.
We find that a 62% year-to-year increase in the total num-
ber of breaches is relatively common in simulation, occurring
15.3% of the time. Similarly, an increase of 282% in total
records occurs in 14.7% of year-to-year transitions. These
results suggest that the large changes identified in these re-
ports are not necessarily significant and could be natural
variations arising from the underlying observed distributions
of data breaches.

Although our model cannot accurately predict the total
number or typical size of data breaches in any given year, it
can assess the likelihood of different sizes of breaches. That
is, we can predict the probability of a breach of a specific size
within a given time-frame, as we show in the next subsection.

4.2 2014 Breaches
To assess the likelihood of the breaches that occurred in

2014, we fit the model using data from 2005 to the end of
2013, and used it to “predict” the events of 2014. The MLEs
of this smaller dataset are virtually identical to those found
for the whole range, suggesting that the 2014 data are not
significantly different from those of the previous nine years.

We used the models derived from the 2005 to 2013 data
to generate 50,000 simulations of breaches from Jan. 1, 2014
through February 18, 2015. For each day in this simulated
timespan we generated a random number of breaches using

6These reports use a combination of public and private data, so
comparison of exact numbers is not feasible.

Equation 2, and then for each simulated breach we gener-
ated a random breach size using Equation 1. We plot the
cumulative number of records breached in Figure 6.

The mean cumulative number of breached records roughly
matches the actual cumulative number of records up to
September 2014, when the Home Depot breach exposed 56
million credit card numbers. Less than six months later an
80-million record breach of the healthcare provider Anthem
led to a large increase in the cumulative number of breaches,
well outside the model’s 95% confidence interval.7

As discussed in subsection 4.1, large data breaches are ex-
pected to occur occasionally due to the heavy-tailed nature
of the distribution from which they are drawn. However, in
our experiments with the model, two breaches of this size
or larger occurred in the same year in only 0.07% of simula-
tions, suggesting that the co-occurrence of these two breach
sizes was indeed rare. Although this event was unlikely, it
is unclear whether or not it represents a statistically signif-
icant change in the overall pattern exhibited by the rest of
the data.

Indeed, this result appears to be in line with the heavy-
tailed distribution of the data, as shown in Figure 2. In-
specting the data in Figure 2, there is 0.0022 probability of a
breach of 56 million or more records, and 0.0013 probability
of a breach of 80 million or more records. Hence, the prob-
ability of two breaches of this magnitude happening within
the 413 days of our prediction is 413×0.62×0.0022×0.0013 =
0.0007, where 0.62 is the average number of breaches per day
over the course of the 10 years. This resulting value of 0.07%
agrees with the simulations of the model.

4.3 Future Breaches
We now use our model built on the past decade of data

breaches to simulate what breaches we might expect in the
next three years in the United States. With the current
climate and concern over data breaches, there will likely
be changes in practices and policy that will change data
breach trends. However, this gives us an opportunity to
examine what might occur if the status quo is maintained.
Once again we use the same methodology, predicting from
February 19, 2015, through Feb 19, 2018. We predict the
probability of several different sizes of breaches. The results
can be seen in Figure 7a and Figure 7b.

Breaches of 750,000 records or more are almost certain
(97.6%) within the next year, but larger breach frequency
does not increase as quickly as intuition might suggest. For
example, there is a 7.7× increase in the probability of the
largest breach (130 million) occurring in the next year, from
0.23% to 1.78%, whereas for the year after that, the proba-
bility only increases by a factor of 1.7, to 3.1%. This drop-off
is a consequence of the decreasing trend in malicious breach
sizes that we identified earlier. This is especially clear in
Figure 7b, which shows that we are almost certain to see
a breach of five million records or more in the next three
years (86.2%), but above that size the probability drops off
rapidly, e.g. a breach of size greater than 60 million has less
than a 10% chance of occurring in the next three years.

Predictions like this could be relevant for policy makers
interested in the problem of reducing data breaches. For
example, the results suggest that it might be more sensible

7In the absence of the Home Depot and Anthem breaches, the
median value of our simulations provides an excellent estimate of
the cumulative number of records breached.
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Figure 5: (a) The number of breaches reported each year throughout the dataset, together with a single simulation sampled from our
model and the average number of breaches. (b) The average breach size reported for each year of data along with simulated sizes of
breaches, and the model’s average breach size.

Figure 6: The cumulative number of breached records, both
historically (shown in blue) and as predicted by our model. The
simulated median (shown in red) is computed over 50,000 inde-
pendent simulations. The dashed lines represent the 95% confi-
dence interval.

to address the problem of smaller breaches that are almost
certain to happen, than to focus on the very large and in-
frequent headline-grabbing events. Disclosure laws at the
Federal level, that force small, local organizations to consis-
tently report breaches, could be one way of doing this.

As with most efforts to model dynamic, real-world phe-
nomena, we expect the predictions to lose accuracy over
time. So although our predictions for the next three years
could be off, we expect the model to work better for the
short term. As a demonstration, beginning February 19,
2015 we predict the probability of various breach sizes in
the next year and before June 22, 2015, which is the start
of the Workshop on the Economics of Information Security
(WEIS). The vertical line in Figure 7a is the date of WEIS.
The exact probabilities are given in Table 4. Thus, we can
say with high probability (70%) that a breach of at least
one million records will occur before WEIS, and we do not
expect to see a breach equivalent to Anthem (1.2% chance).
In the next year we expect only a 31% chance of a breach of

Breach size % Chance
(millions) Before WEIS In 2016

1 70 97
1.5 57 91
2 48 84
5 23 52
10 12 31
25 4.6 12
56 1.8 4.8
80 1.2 3.2
130 0.6 1.7

Table 4: Chance of the occurrence of various size malicious
breaches by the start of WEIS. The breach size is in millions
of records.

10 million records or more.

4.4 Predicting Future Costs
We can estimate the total expected cost of breaches in

the future by incorporating data and other models related
to cost. The Ponemon Institute publishes annual costs of
data breaches, and found an average $201 cost per record
breached in 2014 [28]. Further analysis by others argues
that such a flat rate is not the most accurate model for
costs. Using non-public data, for example, Jacobs showed
that the cost of a breach can be better estimated with a
log-log model of the form [24]

log(c) = 7.68 + 0.7584 ∗ log(s) (3)

where c is the cost of the breach in data, and s is the size of
the breach.

In Equation 3 the cost of a breach grows less than lin-
early, resulting in overall lower costs than those predicted
by the Ponemon model. Because the data used to create
this model are not public, it is hard to assess its validity,
but if it is valid, then it can help us estimate future costs of
data breaches. Combining this model with Equation 1 and
Equation 2 produces the predicted cumulative cost of data
breaches over the next three years, as shown in Figure 8.

The flat rate cost model (Ponemon) suggests that in the
next three years we can expect anywhere between $5.36 bil-
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Figure 7: (a) The predicted probability of breaches of various sizes over the next three years. Each line represents the probability of
at least one breach of the size denoted in the legend occurring before the date on the horizontal axis. We do not include smaller breach
sizes, as they will almost certainly occur within the next few months. (b) The predicted probabilities of breach size after three years.

Figure 8: Predicted cumulative cost of data breaches in the next
three years using two different cost models.

lion and $55 billion in losses associated with public data
breaches. Jacob’s model gives a more modest estimate of
somewhere between $2.8 and $9.64 billion. b

5. RELATED WORK
According to the PRC, over 90 reports and articles refer-

ence the data used in our study [9]. However, only a few
of those reports perform quantitative analysis, and most
do not investigate trends in the size or frequency of data
breaches. There are a few exceptions, for example, the
Symantec Threat Report mentioned earlier. Another exam-
ple is a Verizon report released in 2014 [45], which examines
trends in the relative frequency over time of various types of
attacks and motivations. However, the methodology for de-
termining the trends is not described, and the report makes
no predictions about the future. Many reports from secu-
rity companies, such as those from Trustwave [43], focus on
classifying the various attack vectors, without attempting to
model trends.

There has been little focus on trends in breaches in the
academic literature. Some older research investigated trends

in the relative frequency of various categories of breaches
from 2005-2007, but they found that the limited sample size
prevented them from making statements about the signifi-
cance of their results [14]. More recently, in 2010, Widup ex-
amined yearly trends in different types of data breaches [47].
However, no statistical analysis was conducted to estimate
the underlying distribution or to separate out normal vari-
ations from distinct trends. Some papers investigate pre-
dictions about future events. For example, Bagchi and Udo
developed a general statistical model for predicting the cu-
mulative number security incidents of a specific type [3], and
Condon et. al used a time series model to predict security
incidents [10]. However neither of these two studies focused
specifically on data breaches.

Numerous reports focus on the health care industry. The
U.S. Department of Health and Human Services released a
2014 report examining breaches of protected health informa-
tion [32]. The report includes basic counts of different types
of breaches but does not identify any clear trends. Redspin
has published three annual reports on data breaches in the
healthcare industry [21, 22, 23]. In 2011, they reported a
97% increase in the number of breaches from the previous
year, and a dramatic 525% increase in the number of total
records breached [21]. The following year, they report an in-
crease in the number of large breaches (22%) and a decrease
in the number of total records breached. These variations
fit well with our observations of the heavy-tailed nature of
the underlying data.

Some reports focusing on the cost of data breaches were
described in subsection 4.4. Similar studies focused on hos-
pitals claim that breaches can cost organizations an average
of $2.4 million over the course of two years.

Other work has focused on the overall cost of security
breaches. Acquisti et al. found a negative impact on the
stock value of companies experiencing privacy breaches [1].
Thomas et al. built a branching activity model which mea-
sures the impact of information security breaches beyond a
breached organization [41]. Studies such as these could be
combined with our methodology to infer future overall costs
of breaches.

A number of other studies have examined the possible



policy implications of data breach notification laws. Picanso
suggested a framework for legislation of uniform data breach
notifications [36]. Romanosky et al. analyzed the economic
and legal ramifications of lawsuits when consumer data is
compromised [37]. Later, Romanosky et al. created an ab-
stract economic model to investigate the effect of manda-
tory data breach disclosure laws [38]. Using older parame-
ter estimates, their model shows that if disclosure were made
mandatory, then costs would be higher for companies expe-
riencing breaches and that companies would likely increase
their investment in security infrastructure. Graves et al. use
PRC data to conclude that credit card companies should
wait until fraud occurs before reissuing credit cards in the
wake of a breach [18].

6. DISCUSSION
Our results suggest that publicly reported data breaches

in the U.S. have not increased significantly over the past ten
years, either in frequency or in size. Because the distribu-
tion of breach sizes is heavy-tailed, large (rare) events occur
more frequently than intuition would suggest. This helps
to explain why many reports show massive year-to-year in-
creases in both the aggregate number of records exposed and
the number of breaches [23, 45, 43, 11]. All of these reports
lump data into yearly bins, and this amount of aggregation
can often influence the apparent trends (Figure 1).

The idea that breaches are not necessarily worsening may
seem counter-intuitive. The Red Queen hypothesis in bi-
ology [44] provides a possible explanation. It states that
organisms not only compete within their own species to
gain reproductive advantage, but they must also compete
with other species, leading to an evolutionary arms race. In
our case, as security practices have improved, attacks have
become more sophisticated, possibly resulting in stasis for
both attackers or defenders. This hypothesis is consistent
with observed patterns in the dataset. Indeed, for breaches
over 500,000 records there was no increase in size or fre-
quency of malicious data breaches, suggesting that for large
breaches such an arms race could be occurring. Many large
breaches have occurred over the past decade, but the largest
was disclosed as far back as 2009 [26], and the second largest
was even earlier, in 2007 [5]. Future work could analyze
these breaches in depth to determine whether more recent
breaches have required more sophisticated attacks.

Even if breaches are stable in size and frequency, their
impact is likely growing. The ability to monetize personal
information, and the increasing ease with which financial
transactions are conducted electronically could mean that
the cost of data breaches will rise in the future. To ad-
dress this issue, we considered two different models taken
from the literature, which give wildly different projections.
Reconciling these two models is an important area of future
work. With improved cost models, however, integration with
our models to produce more accurate projections would be
straightforward.

Our results are based on publicly available data. It may
be that the data are incomplete, and therefore our model is
biased downwards, as some breaches will go unreported, but
few reported breaches will prove not to have occurred. As
more data become available, it will be straightforward to in-
corporate and update trend analyses and predictions. Given
new data, from private sources or other countries other than
the United States, it would be important not only to re-

analyze trends, but also to revisit the underlying distribu-
tions. Despite this caveat, we expect that the PRC data is
reasonably complete for the U.S., because most U.S. states
already have disclosure laws (48 out of 50 as of January
2015 [35]) that require organizations to report the compro-
mise of sensitive customer information. These laws vary
in their requirements so it is possible that many breaches
still go unreported. Future work could use interrupted re-
gression to test whether reporting laws change the rate of
reporting [46].

As we described earlier, the data are well-modeled by cer-
tain distributions, and these distributions could arise from
underlying processes related to the breaches (section 2).
However, Figure 2 illustrates that there is some deviation
in the tail, suggesting that the log-normal fit is not ex-
act for breaches that exceed 1,000,000 records. There are
several possible explanations. It could simply be statistical
noise, which is a known consequence of the rarity of large
breaches. Alternatively, it could be that large breaches are
generated by a different process from smaller breaches, a
hypothesis that we rejected in subsection 3.4. Another pos-
sibility is that large breaches are more likely to be reported
than smaller ones, either because there is a higher likelihood
that the breach is noticed or because it is more likely that
some of the records are covered by a disclosure law.

This paper focuses on identifying trends in the size and
frequency of data breaches over time, and predicting the
likelihood of future breaches. However, it may be possible
to identify other factors that influence breaches, for exam-
ple, the size of an organization. It is reasonable to expect
that the number of records that an organization holds is
related to its size, and that this factor alone would affect
expected breach size. We conducted a preliminary investi-
gation of U.S. universities with breaches in the PRC dataset
but found no significant correlation between university en-
rollments (proxy for size of institution) at the time of the
breach and the size of the breach itself. This unanticipated
result bears additional study. In the future we plan to iden-
tify features of organizations that are predictive of the size
and frequency of breaches they will experience, with the goal
of helping policy makers focus their attention where it can
have the most impact.

Our model provides estimates of the probability of
breaches of specific sizes occurring in the past and the fu-
ture through simulation. Given its relative simplicity, it may
be possible to construct analytic solutions for these proba-
bilities, and not have to rely on simulation. However, in
general we cannot expect all such models to be tractable
analytically.

7. CONCLUSION
It is popular today to frame the cybersecurity problem

in terms of risk analysis and management. For example,
the U.S. National Institute of Standards (NIST) has devel-
oped and promulgated its cybersecurity framework, which is
based almost entirely on the concept of risk assessment [34].
To evaluate these risks, however, requires an accurate assess-
ment of both cost and likelihood. In this paper, we focused
on the likelihood component, showing how widely available
datasets can be used to develop more nuanced estimates and
predictions about data breaches than the typically alarmist
reports and headlines produced by security companies and
the popular press. As we have shown here, simply compar-



ing last year’s data with this year’s is unlikely to provide an
accurate picture.

Our analysis of the PRC dataset shows that neither the
size nor the frequency of two broad classes of data breaches
has increased over the past decade. It is, of course, possible
that the PRC dataset is not representative of all breaches or
that there has been a significant transition in the underlying
probabilities in the recent past which is not yet reflected in
our data. A third possible explanation for this surprising re-
sult is that data privacy practices have improved at roughly
the same rate as attacker prowess—Red Queen effect [44].
Under this scenario, we are in an arms race, and can expect
continual pressure to increase defenses just to stay even. It
will take extraordinary efforts if we are ever to get ahead.

In conclusion, data breaches pose an ongoing threat to
personal and financial security, and they are costly for the
organizations that hold large collections of personal data. In
addition, because so much of our daily lives is now conducted
online, it is becoming easier for criminals to monetize stolen
information. This problem is especially acute for individual
citizens, who generally have no direct control over the fate
of their private information. Finding effective solutions will
require understanding the scope of the problem, how it is
changing over time, and identifying the underlying processes
and incentives.
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